
HACKATHON 1.0 - TEAM MAGIC SMOKERS

Hackathon Event https://events.pcbcupid.com/hackathon/1/instructions/

Abstract, Idea generation
What is this full of?
Absolutely nothing? No! This is a compact, modular desk gadget designed not just to
boost productivity and discipline during study or work, but also to improve personal
comfort and wellness. It combines time-management, environmental monitoring,
user interaction, and smart notifications, all configurable via an app or web
dashboard.

Hardware-Driven Features
●​ OLED Display (SH1106): High-contrast interface shows session times,

progress, study stats, hydration alerts, and environmental readings.
●​ Tactile Controls: push buttons and potentiometers provide direct menu

navigation, mode-switching, and real-time adjustment of parameters like timer
durations.

●​ Customizable Alarms: Multiple alarms and reminders via buzzer (audio) and
RGB/LEDs (visual), settable from the device or remotely.

●​ Temperature & Humidity Monitoring: DHT22 sensor tracks room conditions.
Combined with hydration algorithms to send personalized water-reminder
notifications.

●​ Session Feedback: LEDs (RGB, green, red) and a light bar visually indicate
study/break phase, environmental status, or alerts at a glance.

●​ Multi-Mode Operation: Study Mode, Relax Mode, Hydration Mode, and Custom
routines—all switchable from device buttons or over Bluetooth/Wi-Fi via the
app.

●​ Productivity Screen: Tracks Pomodoro cycles, completed tasks, time spent,
and session analytics on the web dashboard.

https://events.pcbcupid.com/hackathon/1/instructions/

Connectivity & Configuration
●​ App/Web Dashboard: Set timers, manage alarms, view stats and sensor data,

control recording, and update firmware from your phone or PC.
●​ Wireless Sync to web dashboard: WiFi local server (via Glyph C3) and remote

configuration.

Extra Perks
●​ Offline Operation: Core features work standalone—no internet needed,

ensuring distraction-free and privacy.
●​ Hands-On Customization: Designed for circuit enthusiasts—expose test

points, debugging headers, and I/O for easier tinkering, firmware updates, and
upgrades.

●​ Motivational Focus: Wellness nudges for hydration and posture,
extra-motivational messaging for productivity, and a visual “focus progress”
LED bar.

List of hardware components used

Sl. No Component Quantity
Price Per Unit

(INR)
Sumup Price

(INR)

1 Glyph C3(headers not soldered) 1 434 434

2

FR4 – High Quality Zero board PCB

(Perfboard) 3 35 105

3 OLED Display (SH1106) 1 220 220

4 Buzzer 1 15 15

5

Tactile Push Button Switch Self

Lock(DPdT Switch)​ 1 10 10

6 Right angle tactile push button 6 5 30

7 RGB LED 7 10 70

8 5mm Green LED 2 3 6

9 5mm Red LED 2 3 6

10 Resistor Box 1 70 70

11 Potentiometer 2 25 50

12

DHT 22 - Humidity and Temperature

Sensor 1 199 199

13 Ultrasonic Sensor 1 112 112

14 LDR(5mm) 1 20 20

15 Female header pins 5 10 50

16 Male header pins 4 10 40

17 Wires 1Meter 4 15 60

 Total (INR) 1497

 Saved (INR) 503

Pin configuration and circuit connections

Circuit design/schematic diagrams
Controller Pinout

Figure: Glyph C3 Pinout Diagram

Pins and Peripherals Used

GLYPH Pin Pin Number Peripheral Application

SCL 1 I2C SCL Display

SDA 2 I2C SDA

D8 3 RG LED - RED SET1 Breathing LED Left

D9 4 RG LED - GREEN
SET1

Breathing LED Right

D3 6 ADC 1 Potentiometer 1

D2 7 ADC 2 Potentiometer 2

TX 27 Digital Out Breathing LED - RED SET2

RX 26 Digital Out Breathing LED - GREEN SET2

MI 25 Digital Out TRIG Ultrasonic (5V VCC)

MO 24 Digital IN ECHO Ultrasonic (5V VCC)

SCK 23 Digital Out Buzzer

D+ 22 ADC 3 LDR Sensor

D- 21 Digital IN Pushbutton 4 (Spare)

A3 20 Digital IN Pushbutton 3

A2 19 Digital IN Pushbutton 2

A1 18 Digital IN Pushbutton 1

A0 17 Digital IN DHT22 Sensor

PIN MAPPING

Code (with comments, if applicable)
Development Flow

1.​ Show DHT22 values on the OLED display and keep showing it on the top side of the
display. It is connected on pin A0.

2.​ Import current time and display live clock as well through NTP via WiFi connection.

3.​ On clicking Button 1, change the clock to a 20 minute countdown timer, then Button 4
to reset and go back to the live clock. Beep buzzer for 1 second at the start of timer,
stop of timer and reset of timer.

4.​ Turn on RG LEDs in breathing mode (PWM) RG SET1 and RG SET2 on clicking
Button 2, and Button 3 respectively. If pressed again, turn the breathing LED off.

5.​ All the functions work when a person is present and active as detected by ultrasound
sensor TRIG and ECHO pins. Take the device to sleep mode and display Sleeping…
zzz when the ultrasonic sensor does not detect anyone in front and keep the RG
LEDs in breathing mode forever.

#include <Arduino.h>

#include <WiFi.h>

#include <NTPClient.h>

#include <WiFiUdp.h>

#include <U8g2lib.h>

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <DHT.h>

#include <DHT_U.h>

// WiFi credentials

const char* ssid = "Magicsmokers";

const char* password = "12348765";

// DHT22 configuration

#define DHTPIN A0 // Change to your DHT22 data pin

#define DHTTYPE DHT22

DHT dht(DHTPIN, DHTTYPE);

// Initialize SH1106 OLED display

U8G2_SH1106_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, U8X8_PIN_NONE);

// NTP Client Setup

WiFiUDP ntpUDP;

NTPClient timeClient(ntpUDP, "pool.ntp.org", 19800, 60000); // GMT+5:30 (IST)

offset in seconds, update interval 60s

// LED pins (active low)

const uint8_t LED_RED_RIGHT = 3; // D8 Pin 3

const uint8_t LED_GREEN_RIGHT = 4; // D9 Pin 4

const uint8_t LED_RED_LEFT = 27; // TX Pin 27

const uint8_t LED_GREEN_LEFT = 26; // RX Pin 26

// Breathing parameters

const uint8_t NUM_LEDS = 4;

const uint8_t ledPins[NUM_LEDS] = {LED_RED_RIGHT, LED_GREEN_RIGHT, LED_RED_LEFT,

LED_GREEN_LEFT};

// PWM brightness range for active low LEDs (0 = fully on, 255 = off)

// We'll map a sine wave or linear fade to pwm values in reverse

// Use brightness from 0..255 for ease, invert in analogWrite

const int breatheSteps = 100; // number of steps to fade in/out

const unsigned long breatheInterval = 10; // ms duration between steps

uint8_t currentLedIndex = 0;

int breatheStep = 0;

bool breatheIncreasing = true;

unsigned long lastBreatheTime = 0;

void setup() {

 Serial.begin(115200);

 // Initialize DHT sensor

 dht.begin();

 // Initialize OLED

 u8g2.begin();

 // Initialize LED pins as output and turn them off (HIGH since active low)

 for (uint8_t i = 0; i < NUM_LEDS; i++) {

 pinMode(ledPins[i], OUTPUT);

 digitalWrite(ledPins[i], HIGH);

 }

 // Connect to WiFi

 WiFi.begin(ssid, password);

 Serial.print("Connecting to WiFi");

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nWiFi connected");

 // Initialize NTP

 timeClient.begin();

 timeClient.update();

}

void breatheLED() {

 unsigned long currentMillis = millis();

 if (currentMillis - lastBreatheTime < breatheInterval) {

 return; // not time to update yet

 }

 lastBreatheTime = currentMillis;

 // Calculate brightness (0-255) peak to off, active low means invert PWM value

 int brightness;

 // Use a smoother brightness curve based on sine for nicer breathing

 float pi = 3.14159265;

 float brightnessFactor = (1 - cos(pi * (float)breatheStep / breatheSteps)) / 2.0;

 // brightnessFactor goes 0->1->0 in gradual breathing

 brightness = (int)(brightnessFactor * 255);

 // Because LEDs are active low, invert brightness for analogWrite

 uint8_t pwmValue = 255 - brightness;

 // Write PWM to current LED

 // Turn off all other LEDs

 for (uint8_t i = 0; i < NUM_LEDS; i++) {

 if (i == currentLedIndex) {

 analogWrite(ledPins[i], pwmValue);

 } else {

 digitalWrite(ledPins[i], HIGH); // off

 }

 }

 // Update breathe step

 breatheStep++;

 if (breatheStep > breatheSteps) {

 breatheStep = 0;

 // Move to next LED

 currentLedIndex++;

 if (currentLedIndex >= NUM_LEDS) {

 currentLedIndex = 0;

 }

 }

}

void loop() {

 // Update time from NTP periodically

 timeClient.update();

 // Read temperature and humidity

 float temperature = dht.readTemperature();

 float humidity = dht.readHumidity();

 // Clear display buffer

 u8g2.clearBuffer();

 // Set font for sensor data

 u8g2.setFont(u8g2_font_6x13_tr);

 // Display temperature and humidity at the top

 char tempStr[16];

 char humStr[16];

 if (isnan(temperature) || isnan(humidity)) {

 u8g2.drawStr(0, 12, "Sensor Error!");

 } else {

 snprintf(tempStr, sizeof(tempStr), "T: %.1fC", temperature);

 snprintf(humStr, sizeof(humStr), "H: %.1f%%", humidity);

 u8g2.drawStr(0, 12, tempStr);

 u8g2.drawStr(70, 12, humStr);

 }

 // Prepare time string (HH:MM:SS)

 unsigned long epochTime = timeClient.getEpochTime();

 int currentHour = (epochTime % 86400L) / 3600; // hour in 24h format

 int currentMinute = (epochTime % 3600) / 60;

 int currentSecond = epochTime % 60;

 char timeStr[16];

 snprintf(timeStr, sizeof(timeStr), "%02d:%02d:%02d", currentHour, currentMinute,

currentSecond);

 // Set larger font for center time display

 u8g2.setFont(u8g2_font_fur17_tr);

 // Calculate x position to center the time string (128 width display)

 int16_t textWidth = u8g2.getStrWidth(timeStr);

 int16_t xPos = (128 - textWidth) / 2;

 // Draw time centered vertically and horizontally (place vertically near center)

 u8g2.drawStr(xPos, 54, timeStr);

 // Send buffer to display

 u8g2.sendBuffer();

 // Update breathing LEDs

 breatheLED();

 // Delay removed or reduced to allow smooth breathing effect

 // Smaller delay to allow for breathing effect updates smoothly

 delay(10);

}

Software/tools used
Arduino IDE

Clear pictures of the setup/prototype

PROTOTYPE SHOWING THE TEMPERATURE,HUMIDITY AND TIMER

Working explanation and output

Applications and other relevant details

Applications

●​ Student Study Aid: Organizes focused sessions with timers and offers audio

recording/playback for notes and lectures.

●​ Professional Productivity: Manages tasks, breaks, and multi-mode workflows via

alarms and analytics.

●​ Health Monitoring: Tracks temperature and humidity to provide personalized

hydration reminders.

●​ Remote Connectivity: Bluetooth/Wi-Fi enabled for app/web-based control,

monitoring, and customization.

●​ Time & Task Tracking: Displays session progress, Pomodoro counts, and productivity

stats on device and dashboard.

●​ Customizable & Expandable: Designed for makers with support for firmware updates

and additional sensors/features.

●​ Stress Relief Features: Relax Mode with ambient lighting, soothing sounds, and

motivational prompts to boost focus.

●​ Ergonomic Integration: Controls external devices (e.g., lamps) and supports potential

ergonomic health reminders.

Target Customers of the Study Buddy Device

●​ Students:Seeking tools to improve focus, structure study time, and record notes

effectively.

●​ Working Professionals:Needing to organize tasks, schedule breaks, and maintain

productivity in office or remote work environments.

●​ Remote Workers & Home Office Users:Interested in smart, connected devices for

customization and monitoring of their workspace comfort and efficiency.

●​ Health-Conscious Individuals:Prioritizing hydration, posture awareness, and

balanced work-rest cycles to enhance wellness.

●​ Productivity Enthusiasts:Users of Pomodoro and similar techniques who value

detailed tracking and motivation tools.

●​ DIY Makers & Electronics Hobbyists:Looking for devices with customization options,

firmware update capability, and sensor expansion.

●​ Educational Institutions:Aiming to provide students with smart study aids to foster

better learning habits and wellness monitoring.

●​ Tech-Savvy Consumers:Interested in IoT-enabled, app-configurable devices that

integrate into existing smart home or work systems.

Ambient Lighting and Mood Enhancement – Future

Scope

Abstract:

The lighting technology used for residential and commercial establishments

has improved tremendously in recent years. From the era of incandescent

lamps to the modern LED lighting systems, the transition is remarkable with

power saving, better illumination, mood lighting thereby improving the

user satisfaction. In this paper a localized strategy for LED lighting control is

proposed, whereby available illumination is utilized judiciously. Additional

integration of the control with the atmosphere in the room, no of persons

occupying the room is also considered.

REFERENCE: 2023 International Conference on Artificial Intelligence
and Applications (ICAIA) Alliance Technology Conference (ATCON-1)

https://ieeexplore.ieee.org/xpl/conhome/10169127/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10169127/proceeding

	HACKATHON 1.0 - TEAM MAGIC SMOKERS
	Abstract, Idea generation
	What is this full of?
	Hardware-Driven Features
	Connectivity & Configuration
	Extra Perks

	List of hardware components used
	Pin configuration and circuit connections
	Circuit design/schematic diagrams
	Controller Pinout
	Pins and Peripherals Used

	PIN MAPPING
	Code (with comments, if applicable)
	Development Flow

	Software/tools used
	Clear pictures of the setup/prototype
	Working explanation and output
	Applications and other relevant details
	Applications
	Target Customers of the Study Buddy Device

	Ambient Lighting and Mood Enhancement – Future Scope
	Abstract:

	

